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CHAPTER 1
INTRODUCTION

Previous reports in this series [1-5] have concentrated on the development
of numerical models intended to increase the level of understanding of in-flight
triggered lightning strikes. This involved the analysis of electromagnetic data collected
by the NASA F106B Thunderstorm Research Aircraft to determine the electromagnetic
environment for an aircratt flying in or near a thunderstorm. In this report. the
emphasis has been shifted to an application of the numerical models deveioped in
previous years, and an extension of the present understanding of the triggered
lightning environment to aircraft other than the F106B.

In Chapter 2, an extensive application of linear triggered lightning models to
data collected by the F106B is presented [6-11]. The data, both measured and
calculated, are analyzed statistically for correlations which may be used to predict
electromagnetic aircraft responses for strikes on which a full complement of sensors
was not available. For example, a D-dot response that, in general, correlates well with
an |-dot sensor was unavailable or nonfunctional.

Chapter 3 presents the application of electrostatic field mill models to predict
ambient field and charge levels for cases in which the F106B triggered lightning
strikes. The predicted fields, combined with known enhancement factors of the F106B,
are shown to be sufficient to cause the observed lightning strikes.

The application of subgrid modeling is presented in Chapter 4. There a
subgrid is placed around the nose of the F106B and combined with an electrostatic
field solution to predict ambient field breakdown levels and subsequent nonlinear
electromagnetic responses on the aircraft. As one would expect, the ambient field
levels required for air breakdown are less than for non-subgrid models because of the
subgrid's ability to model finer details and sharper points in the nose region.
Calculated electromagnetic sensor responses are compared with measured values
and with calculated response for non-subgrid models.

Chapter 5 represents an attempt to extend the triggered lightning
environment to aircraft other than the F106B. The responses of four different aircraft



are analyzed to determine scaling laws for triggering fields and sensor responses
between aircraft of differing sizes and shapes. The analysis is extended to aircraft in
general through the use of canonical shapes.

Chapter 6 models the response of the F106B to a leader-return stroke
sequence of events. The return stroke is assumed to approach the aircraft along the
previously ionized channel of a leader which had begun at the aircraft or passed
through it. The physics associated with the return stroke is included usmg nonlinear
modeling techniques.



CHAPTER 2

EXTENDED APPLICATION OF THE LINEAR LIGHTNING
INTERACTION MODEL

2.1 Introduction

The lightning data collected by the F106B contains large quantities of
electromagnetic waveforms. This data set in its raw form is difficult to use because of
its size and complexity. A distillation of the data set down to a collection of descriptive
parameters is desirable. This chapter reports on the development of a database
containing the electromagnetic quantities measured by the F106B during direct
lightning strikes to the aircraft. Also included in the database are results from lightning
strike simulations.

The linear lightning interaction model [4] has been used in conjunction with
the in-flight data in order to construct a database of response characteristics for
lightning events recorded on the NASA F106B Research Aircraft during 1984.
Characteristics derived from the measured transient responses and from the
responses calculated through the use of the linear transfer function technique and the
linear finite difference model appear in the database and can be accessed through the
use of a computer program written to display the prominent elements.

This chapter also presents a comparison of measured and calculated
response records for 53 separate 1984 lightning events. Simulated and measured
transient responses appear as one microsecond records in the overlays produced to
supplement the information contained in the characteristic database.

Finally, the results of a correlation study relating lightning current responses
to external and internal measured responses are discussed. The steps used in
determining the relationships presented are given and the predictive capabilities of the
models are indicated.



2.2 The 1984 Measured and Calculated Strike Database
2.2.1 rganization an v

The 1984 database was developed with the primary goal of organizing the
available data into a consistent structure of characteristics that would allow easy
access to both the calculated and measured entries. The elements of
NASAB4DATABASE (the database file) were generated and constructed to meet
these particular demands.

The framework selected for this purpose treated all of the information
obtained for each measured or calculated strike as a structured data item. The items
were then organized in array format to produce the present database. This type of
implementation permits the particular structured data item of interest to be located
easily by simply searching the "array” of structured items for an entry containing the
appropriate identification.

The characteristics were developed so that a comparison between
measured and calculated elements would be meaningful. The creation of one
microsecond response records from the measured transient responses was a
necessary part of this development when both measured and calculated data could be
obtained for the same event. These records assured the consistency of certain
characteristics appearing in the database.

The database contains strike characteristics determined from the
examination of the in-flight data for 110 events and from the linear modeling results for
53 events. Every strike represented in the database contains information concerning
the following sensor response characteristics:

(i) Maximum Sensor Value

(i)  Minimum Sensor Value

(iii) Peak Sensor Value (calculated as -
max { | Maximum Sensor Value |, | Minimum Sensor Value |}
with appropriate sign)

(iv) Range of the Sensor Response (calculated as the difference of the
maximum and minimum values).

4



In cases where both measured and calculated data is available for the same event, the
following additional characteristics are generally found:

(v)  Sensor Peak Width at Half Maximum

(vi)  Maximum Time Derivative of the Sensor Response

(vii)  Minimum Time Derivative of the Sensor Response

(viii) Peak Positive Difference in Charge for Current Sensors
(ix) Peak Negative Difference in Charge for Current Sensors.

The appearance of these secondary characteristics in the database depended upon
sensor availability, the successful production of one microsecond records from the
measured transient responses and in the case of sensor peak width at half maximum,
the nature of the response waveform.

The methods used to obtain some of the quantities in the preceding list
require a brief explanation. A discussion of the individual techniques is given below.

1. Sensor Peak Width at Half Maximum

This time was calculated by locating the peak response value in time and
then moving away from the major peak in both directions until half peak response
values were found. The length of the time interval defined by the successful location of
the half peak response values is the time characteristic appearing in the database. If
examination of the one microsecond record failed to produce the required pair of half
peak response values, this characteristic was not produced. This could occur, for
instance, if the sensor response stayed high after the peak response was achieved.

2. The Maximum and Minimum Time Derivatives of the Sensor Response.
The maximum and minimum values were found by comparing the

derivatives obtained at each time step in the one microsecond records. A simple
difference approximation was used to generate the derivative data.



3. The Peak Difference in Charge for Current Sensors

Linear interpolation was used between discrete data points to represent the
current as a continuous function of time. This function was then integrated over the
sample interval to arrive at a difference in charge value. For the measured data, these
values were then scaled by the length of the sample interval so that the results could
be compared to the one nanosecond "sampling” time interval used to obtain the
calculated values. The peak values were then obtained by examining similar
calculations throughout the one microsecond current response record.

Additional items attached to each strike entry include the unique flight, run
and strike numbers and the type of data (measured or calculated) appearing in that
particular entry. The calculated data entries also include the attach-detach locations
used to produce the linear modeling results. Spaces were allocated in the database
for temperature, altitude and attachment-detachment elements during the stages of
database development. Unfortunately, this information could not always be obtained
from the 1984 tapes.

222 Database Access

The more important features of the 1984 database may be viewed through
the use of the FORTRAN program NASA84DATABASE_READ. Characteristics of a
unique strike may be accessed by providing the interactive program with the
appropriate flight, run and strike numbers. The program will also ask whether
calculated or measured data is required and will inform the user if the requested strike
does not appear in the database.

NASA84DATABASE_READ was written primarily to insure the correct
production of strike entries during the process of constructing the database. As a
result, some of the characteristics stored in the database are not displayed when using
this program. These include the maximum and minimum time derivatives and the
ranges of the sensor responses. The remaining strike elements (those listed as i, ii, iii,
v, Viii, ix in Section 2.2.1) are available through interactive use.



The one microsecond records generated by one of the programs written to
form the measured portion of the database provided a convenient basis for comparing
the in-flight data with the data obtained from the linear simulation model. The set of
overlays produced for this compariscn appear in Appendix A. Several aspects of this
response comparison deserve consideration. It should be noted that nose current
measurements, which were made, are not included in Appendix A. They are omitted
because the current shunt was felt to have a frequency dependent response, and no
reliable method was found to calibrate it.

In general, the calculated response data obtained by using the B-dot
longitudinal sensor to derive a current source using transfer function techniques
described elsewhere [4] compares favorably with the aircraft sensor data. The results
from this particular sensor appear to more consistently match the in-flight data than
those obtained from the D-dot forward sensor used for many of the later flights. The
probable reasons for this difference were given in a previous report [4].

A closer examination of the records reveals an apparent discrepancy in the
response data obtained for the B-dot sensors on the wings of the F106B. These
results may in part be due to the differences in sampling between the medeled and
measured data.

The records from Flight 84.025 Run 2 Strike 3 and Fiight 84.036 Run 2 Strike
2 provide an interesting basis for comparison. A sensor by sensor examination of the
measured B-dot and D-det waveshapes and amplitudes would seem to indicate that
these two strikes represent similar lightning events. A similar conclusion is not evident
if the measured current responses are examined. The current response record from
Fiight 84.025 shows better agreement with the calcuiated data and appears to be
consistent with the other sensor responses which are indicative of a strike with a
current response peak amplitude on the crder of a few hundred amperes. in the case
of Flight 84.036, the large amplitude current response ditfers significantly from the
derived current and appears to be incensistent with the other sensor responses.

The resuits from this comparison wouid seem to suggest a problem with the
measured current record from the strike on Fiight 84.036. This is supported by



examining both the one microsecond measured I-dot record produced for this strike
and a one microsecond record produced by integrating this particular response.
These records shown in Figures 2.1 and 2.2, demonstrate that the large rise in current
amplitude seen at the end of the response comparison data is inconsistent with the
measured I-dot data.

The I-dot comparisons are absent from the present set of overlays in
Appendix A because the results of a brief filtering study indicated that a closer
comparison of the measured and calculated response data for this particular sensor is
possible if the derived current is filtered before differentiation. In Figures 2.3 through
2.11, the filtered current and the corresponding calculated I-dot response is shown for
9 strikes from the 1984 modeling results. In each case, the derived current source
obtained from the linear transfer function technique was filtered using a fifth order
Chebyshev low-pass filter with a digital cutoff frequency of 50 MHz. Although the
derived current source was obtained from measured data prefiltered at 50 MHz, further
filtering was required on this source before the I-dot response comparison was
favorable. The reason for this apparent discrepancy stems from the use of the digital
Fourier transform in conjunction with the operation of differentiation. The derived
current source obtained from the digital transform contains high frequency
components which do not appear in the measured data. If a time derivative is
calculated for this unfiltered source, the differentiation process will in turn produce a
waveform with very high frequency content. Because of this phenomenon, it is
necessary to remove the high frequency components before the time derivative is
calculated.

(text continues on page 20)
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2.3 Lightning Current Response Correlation Study
2.3.1 Meth f Analysi

The strike characteristics developed from the 1984 data have been used to
determine possible relationships between lightning current responses and the other
sensor responses. The method of analysis used in this correlation study is detailed
below.

The first step in the analysis of the 1984 characteristics was to produce
scatter diagrams relating the characteristics of the lightning current and its time
derivative to similar characteristics obtained from the external and internal responses.
The diagrams, consisting of ordered pairs of sensor characteristics, allow a preliminary
view of possible functional relationships existing between the two coordinates. The
diagrams ware produced from the avalilable data and Included an examination of the
maximum, minimum, peak value and sensor peak width at half maximum
characteristics. The plots were necessary to identify both the candidates and regions
for possible correlation.

The next step involved the production of polynomial approximations for the
most promising data sets. The least squares program designed for this purpose used
a modified orthogonal decomposition algorithm using Householder Reflections [12] to
obtain the polynomial approximations for degrees one through five that were used to
study the behavior of the lightning data. In addition, the program contained the
following statistical measures:

(i) A generalized correlation coefficient given by

2(Yest-Ym)
S(y-ym)°

where vy is a functional value obtained from the appropriate data set
Yest is the corresponding functional value obtained from the least squares

curve
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Ym is the mean functional value obtained from the appropriate data set.

(1) A standard error of estimate given by

3
'\/ﬁ'z(y - Yest)2

where m is the number of data points.

These values were used to help determine whether the data could be modeled by a
N

lower order polynomial approximate (having the form y = 2 ayXJ for N < 5) and in
J=0

evaluating the accuracy of the least squares curves as predictive tools.

In the final stage of analysis, plots were generated for the most useful
correlations to determine the behavior of the least squares curves in the strongly
correlated regions. The regions were the regions having the highest degree of
correlation.

Also considered in the analysis was the fact that a higher order approximate
might marginally improve the statistical characteristics of a system well served by a
lower order curve. This was taken into consideration when the least squares results
were examined.

2.3.2 Results of th rrelation

Using the method of analysis described in the previous section, several
relationships were obtained based upon trends in the 1984 data. These relationships
represent the strongest indications of possible connections between the aircraft
response characteristics considered in this study.

The best correlations found between the lightning current response data and
the remaining sensor response data resulted when the I-dot peak values were
compared to the peak values from some of the external sensors. The restricted ranges
of the response characteristics used to obtain these relationships are given in Table
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2.1. The distribution of the data and the consideration of reasonable sensor
responses were the primary factors used to determine these regions.

TABLE 2.1
Restricted Peak Value Ranges

Sensor Peak Value Range
I-dot 5x109A/S< | 11 <3x 1010 A/S
B-dot Longitudinal 1x102T/8 < | éLl <1.8x103T/S
D-dot Forward 2 Alsqm< | Drl <13 A/sq.m
B-dot Right Wing 1x102T/S< | Brw! £7x102T/8
B-dot Left Wing 1x102T/S< | Biw! £7x102T/S

Restricing the ranges of the sensor response characteristics was a
necessary part of the analysis because it was determined that many of the response
pairs appeared to be inconsistent if they appeared outside these regions. For
example, it was possible in certain instances to obtain an abnormally low Band D
sensor peak value (in terms of absolute value) for a particular strike which was paired
with a relatively high I peak value. This type of behavior played an important role in
selecting these regions.

The scatter diagrams for the restricted data sets showing the highest degree
of correlation appear in Figures 2.12 - 2.19. As these plots indicate, the data of interest
was divided into two categories (producing two distinct scatter diagrams) based upon
the signs of the appropriate sensor characteristics. This division was required so that
a functional relationship could be developed between the peak value pairs. The plots
also clearly indicate a spread in the data which will have the effect of limiting the use of
the developed correlations.

Although many factors were considered in deciding which data sets
represented the strongest trends, the correlation coefficient described above was used
as a general guide in the selection process. All of the sets shown in Figures 2.12 - 2.19

(text continued on page 31)
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had correlation coefficients that reflected an explained variation percentage of roughly
75% or better (this percentage may be obtained easily by simply expressing the
square of the correlation coefficient as a percentage.) This means that the majority of
the total variation can be attributed to the least squares curves.

The corresponding polynomial approximates for these data sets appear in
Figures 2.20 - 2.27. The differences in the approximates are in part due to the
adjustment of the higher order approximates to data sets with an inherent spread.
Differences showing up on the ends of the correlation region are in part due to the fact
that data was not statistically removed during the correlation procedure. Features
such as the departure from monotonic behavior and the more pronounced spreading
of the curves often witnessed at the extremes of the correlation region are largely due
to the inclusion of certain data points. The removal of these points would alter the
correlations significantly in these regions. Finally, it should be noted that the smaller
number of points available for the B-dot sensors on the wings of the F106B affected
the higher order approximates in certain cases by turning the approximation problem
into very nearly an interpolation problem. The affected curves for these cases would
have a tendency to more closely follow the points rather than follow any general trend
that may be indicated.

If these factors are taken into consideration, it appears that the plots indicate
certain trends in the data. The most significant correlations in this set are the ones
relating the I-dot peak values to the peak values of the B-dot longitudinal and D-dot
forward sensors. More data was available for these sensors than for the remaining
B-dot sensors in the set. These latter sensors were included in the figures because
they correlated extremely well to the I-dot data. The fact that only a small number of
data points were available did not greatly alter this view.

An examination of the data produced from this analysis indicates that the
particular data sets under consideration can be adequately modeled using a first or
second degree polynomial. Figures 2.28 - 2.35 show these least squares estimates.
Although there were some higher order nonlinear data tendencies, the data residing in
the restricted regions used for this analysis exhibited primarily lower order behavior.
Much of the higher order behavior in this set is undoubtedly due to an effort on the part
of the least squares curves to account for some of the data points mentioned above. In

(text continued on page 48)
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